]]>13509衡量 AI Guardrails 在生成式 AI 應用中的有效性和性能
http://www.open-lab.net/zh-cn/blog/measuring-the-effectiveness-and-performance-of-ai-guardrails-in-generative-ai-applications/
Mon, 03 Mar 2025 06:18:06 +0000http://www.open-lab.net/zh-cn/blog/?p=13146Continued]]>保護 AI 智能體和其他對話式 AI 應用,以確保安全、品牌和可靠的行為,這對企業至關重要。 NVIDIA NeMo Guardrails 通過 AI Guardrails 為內容安全、主題控制、越獄檢測等提供強大的保護,以評估和優化 Guardrail 性能。 在本文中,我們將探索用于測量和優化 AI 護欄有效性的技術,確保您的 AI 應用在仔細定義的邊界內運行,同時滿足用戶體驗和其他設計要求。 NeMo Guardrails 提供了一個 評估工具 ,用于在給定特定 AI Guardrails 策略的情況下監控策略合規性。除了 LLM 生成響應的策略合規性率之外,該工具還提供了有關延遲和 LLM 令牌使用效率等關鍵性能指標的見解。本文將指導您完成評估工具,重點介紹每個指標在優化 AI 應用方面發揮的作用。 隨著企業不斷突破 AI 的極限,平衡性能和成本效益已成為重中之重。
]]>13146定義 LLM 紅色團隊
http://www.open-lab.net/zh-cn/blog/defining-llm-red-teaming/
Tue, 25 Feb 2025 07:04:29 +0000http://www.open-lab.net/zh-cn/blog/?p=13036Continued]]>在一項活動中,人們為生成式 AI 技術 (例如大語言模型 (LLMs)) 提供輸入,以確定輸出是否會偏離可接受的標準。LLMs 的這種使用始于 2023 年,并已迅速發展成為一種常見的行業實踐,也是值得信賴的 AI 的基石。如何標準化和定義 LLM 紅色團隊? NVIDIA、華盛頓大學、Center for Human-Compatible AI 和哥本哈根 IT 大學的研究人員對紅色團隊的實際應用“ Summon a demon and bind it: A grounded theory of LLM red teaming ”(在 PLOS One 中發布) 進行了一項研究。 由于目標是定義和理解相對較新的活動,因此該研究采用了有根據的理論方法,在數千分鐘的視頻錄制中,以數十位從業者的訪談作為證據。我們與安全專業人員、政策研究人員和科學家,
]]>13036如何使用 NVIDIA NeMo Guardrails 為客戶服務保護 AI 智能體
http://www.open-lab.net/zh-cn/blog/how-to-safeguard-ai-agents-for-customer-service-with-nvidia-nemo-guardrails/
Thu, 16 Jan 2025 06:23:28 +0000http://www.open-lab.net/zh-cn/blog/?p=12699Continued]]>AI 代理為 企業擴展和提升客戶服務以及支持交互提供了重要機會。這些客服人員可自動處理日常查詢并縮短響應時間,從而提高效率和客戶滿意度,幫助組織保持競爭力。 但是,除了這些優勢之外, AI 智能體也存在風險 。 大語言模型(LLMs) 容易生成不當內容或離題內容,并且容易受到“jailbreak”攻擊。為了充分發揮生成式 AI 在客戶服務中的潛力,實施可靠的 AI 安全措施至關重要。 本教程為 AI 構建者提供了切實可行的步驟,以便將基本的安全措施集成到適用于客戶服務應用的 AI 智能體中。它展示了如何利用 NVIDIA NeMo Guardrails ,一種可擴展的鐵路編排平臺,包括作為 NVIDIA NIM 微服務提供的以下三個新的 AI 保障模型: 通過本教程,您將學習如何部署 AI 智能體,在保持客戶信任和品牌完整性的同時提供快速、準確的響應。