]]>14474使用 NVIDIA NIM 安全部署 AI 模型
http://www.open-lab.net/zh-cn/blog/securely-deploy-ai-models-with-nvidia-nim/
Wed, 11 Jun 2025 09:12:36 +0000http://www.open-lab.net/zh-cn/blog/?p=14306Continued]]>想象一下,您正在領導大型企業的安全工作,并且您的團隊渴望將 AI 用于越來越多的項目。不過,這是一個問題。與任何項目一樣,您必須平衡創新的前景和回報與合規性、風險管理和安全態勢要求等嚴峻現實。 安全領導者在評估 AI 模型 (例如為代理式 AI 或檢索增強生成 (RAG) 提供支持的 AI 模型) 時面臨著一個關鍵挑戰:如何在提供這些前沿創新的同時保持對其基礎設施和數據的完全控制。 這正是 NVIDIA NIM 微服務和 NVIDIA AI Enterprise 的用武之地。借助隨 NVIDIA AI Enterprise 許可證提供的 NIM 微服務,企業能夠根據自己的條件部署生成式 AI,同時保持對開源模型的安全性、信任和控制。NVIDIA AI Enterprise 提供了一種選擇:您可以在本地、私有云甚至空氣間隙環境中安全地運行 AI 工作負載。
]]>13663借助代理式 AI 系統推進網絡安全運營
http://www.open-lab.net/zh-cn/blog/advancing-cybersecurity-operations-with-agentic-ai-systems/
Mon, 28 Apr 2025 08:59:07 +0000http://www.open-lab.net/zh-cn/blog/?p=13678Continued]]>被動式 AI 時代已經過去。一個新時代正在開始,AI 不僅能做出響應,還能思考、計劃和行動。 大語言模型 (LLM) 的快速發展釋放了 代理式 AI 系統的潛力,使包括網絡安全在內的許多領域的繁瑣任務實現自動化。 過去,網絡安全領域的 AI 應用主要側重于檢測跨不同數據源、網絡環境和網絡擊殺鏈各個階段的惡意或異常活動。由于檢測是自動化的中心,大部分安全操作仍然是手動操作。安全分析師仍需花費大量時間手動調查警報、交叉參考情報以及評估和響應潛在威脅。 隨著代理式系統的興起,網絡安全領域的 AI 應用開始圍繞安全分析師的需求進行重新規劃。這些系統可自動執行分析師目前執行的許多耗時而繁瑣的任務,使他們能夠專注于更高級別的判斷決策和深度調查。通過利用高級推理、動態決策和工具調用功能,代理式系統現在可以承擔復雜但重復性的任務,例如研究威脅情報、關聯安全警報和執行初步響應操作。
]]>13578衡量 AI Guardrails 在生成式 AI 應用中的有效性和性能
http://www.open-lab.net/zh-cn/blog/measuring-the-effectiveness-and-performance-of-ai-guardrails-in-generative-ai-applications/
Mon, 03 Mar 2025 06:18:06 +0000http://www.open-lab.net/zh-cn/blog/?p=13146Continued]]>保護 AI 智能體和其他對話式 AI 應用,以確保安全、品牌和可靠的行為,這對企業至關重要。 NVIDIA NeMo Guardrails 通過 AI Guardrails 為內容安全、主題控制、越獄檢測等提供強大的保護,以評估和優化 Guardrail 性能。 在本文中,我們將探索用于測量和優化 AI 護欄有效性的技術,確保您的 AI 應用在仔細定義的邊界內運行,同時滿足用戶體驗和其他設計要求。 NeMo Guardrails 提供了一個 評估工具 ,用于在給定特定 AI Guardrails 策略的情況下監控策略合規性。除了 LLM 生成響應的策略合規性率之外,該工具還提供了有關延遲和 LLM 令牌使用效率等關鍵性能指標的見解。本文將指導您完成評估工具,重點介紹每個指標在優化 AI 應用方面發揮的作用。 隨著企業不斷突破 AI 的極限,平衡性能和成本效益已成為重中之重。
]]>13039定義 LLM 紅色團隊
http://www.open-lab.net/zh-cn/blog/defining-llm-red-teaming/
Tue, 25 Feb 2025 07:04:29 +0000http://www.open-lab.net/zh-cn/blog/?p=13036Continued]]>在一項活動中,人們為生成式 AI 技術 (例如大語言模型 (LLMs)) 提供輸入,以確定輸出是否會偏離可接受的標準。LLMs 的這種使用始于 2023 年,并已迅速發展成為一種常見的行業實踐,也是值得信賴的 AI 的基石。如何標準化和定義 LLM 紅色團隊? NVIDIA、華盛頓大學、Center for Human-Compatible AI 和哥本哈根 IT 大學的研究人員對紅色團隊的實際應用“ Summon a demon and bind it: A grounded theory of LLM red teaming ”(在 PLOS One 中發布) 進行了一項研究。 由于目標是定義和理解相對較新的活動,因此該研究采用了有根據的理論方法,在數千分鐘的視頻錄制中,以數十位從業者的訪談作為證據。我們與安全專業人員、政策研究人員和科學家,
]]>13036如何使用 NVIDIA NeMo Guardrails 為客戶服務保護 AI 智能體
http://www.open-lab.net/zh-cn/blog/how-to-safeguard-ai-agents-for-customer-service-with-nvidia-nemo-guardrails/
Thu, 16 Jan 2025 06:23:28 +0000http://www.open-lab.net/zh-cn/blog/?p=12699Continued]]>AI 代理為 企業擴展和提升客戶服務以及支持交互提供了重要機會。這些客服人員可自動處理日常查詢并縮短響應時間,從而提高效率和客戶滿意度,幫助組織保持競爭力。 但是,除了這些優勢之外, AI 智能體也存在風險 。 大語言模型(LLMs) 容易生成不當內容或離題內容,并且容易受到“jailbreak”攻擊。為了充分發揮生成式 AI 在客戶服務中的潛力,實施可靠的 AI 安全措施至關重要。 本教程為 AI 構建者提供了切實可行的步驟,以便將基本的安全措施集成到適用于客戶服務應用的 AI 智能體中。它展示了如何利用 NVIDIA NeMo Guardrails ,一種可擴展的鐵路編排平臺,包括作為 NVIDIA NIM 微服務提供的以下三個新的 AI 保障模型: 通過本教程,您將學習如何部署 AI 智能體,在保持客戶信任和品牌完整性的同時提供快速、準確的響應。
]]>12389探索采用自主 AI 和 NVIDIA 機密計算的超級協議案例
http://www.open-lab.net/zh-cn/blog/exploring-the-case-of-super-protocol-with-self-sovereign-ai-and-nvidia-confidential-computing/
Thu, 14 Nov 2024 07:06:03 +0000http://www.open-lab.net/zh-cn/blog/?p=12032Continued]]>機密和自主的 AI 是一種新的 AI 開發、訓練和推理方法,其中用戶的數據是去中心化的、私有的,并由用戶自己控制。本文將探討如何通過使用區塊鏈技術的去中心化來擴展 Confidential Computing(CC)的功能。 通過使用個人 AI 智能體,可以非常清楚地看到所解決的問題。這些服務可幫助用戶完成許多任務,包括撰寫電子郵件、準備報稅和查看醫療記錄。毋庸置疑,所處理的數據是敏感的個人數據。 在集中式系統中,這些數據由人工智能服務提供商在云中處理,通常不透明。當用戶的數據離開設備時,他們將失去對自己數據的控制,而這些數據可能會被用于訓練、泄露、出售或以其他方式被誤用。屆時無法追蹤個人數據。 這種信任問題阻礙了 AI 行業發展的某些特定方面,尤其是對于尚未獲得聲譽或證據來支持其真實意圖的初創公司和 AI 開發者而言。