]]>11506NVIDIA 在領先的網絡安全會議上展示 AI 安全專業知識
http://www.open-lab.net/zh-cn/blog/nvidia-presents-ai-security-expertise-at-leading-cybersecurity-conferences/
Wed, 18 Sep 2024 07:46:54 +0000http://www.open-lab.net/zh-cn/blog/?p=11377Continued]]>每年 8 月,成千上萬的安全專業人員都會參加最前沿的安全會議 Black Hat USA 和 DEF CON。這一年,NVIDIA AI 安全專家參加了這些活動,分享我們的工作,并向社區其他成員學習。 本文概述了這些貢獻,包括關于快速發展的 AI 環境的主題演講、對抗性機器學習訓練、關于大型語言模型(LLM)安全性的演講等。這項工作有助于為安全社區提供必要的知識,以便他們以安全為理念有效部署 AI 系統。 Black Hat 是一項國際公認的網絡安全活動,提供相關的技術和信息安全研究。本年,圍繞生成式 AI 工具在安全生態系統中的應用可能性以及 AI 部署本身的安全性,討論聲不斷增長。 在 AI 峰會主題演講中,NVIDIA 網絡安全 AI 總監 Bartley Richardson 與 WWT 首席執行官 Jim Kavanaugh 共同分享了對迅速發展的 AI…
]]>10664保護應用程序完整性的安全 LLM 令牌化解決方案
http://www.open-lab.net/zh-cn/blog/secure-llm-tokenizers-to-maintain-application-integrity/
Thu, 27 Jun 2024 05:42:08 +0000http://www.open-lab.net/zh-cn/blog/?p=10557Continued]]>本文是 NVIDIA AI Red Team 持續漏洞和技術研究的一部分。NVIDIA AI Red Team’s利用本文所展示的概念負責任地評估和提高您 AI 開發和部署流程及應用的安全性。 大型語言模型(LLM) 不會在字符串上運行。相反,提示通過通常透明的轉換器(稱為 tokenizer)傳遞,該轉換器根據提供的提示字符串創建令牌 ID 數組。同樣,tokenizer 將 LLM 輸出(令牌 ID 數組)處理回可讀文本。 初始化 tokenizer 時,驗證不足可能會使惡意行為者破壞令牌編碼和解碼,從而在用戶可讀輸入和輸出與 LLM 計算之間造成差異。 由于多種原因,攻擊者可能會鎖定 tokenizer。雖然 tokenizer 最初是經過訓練的,但它們也經常被重復使用。一個 tokenizer 可以用于數百個衍生模型。雖然模型通常經過重新訓練或微調,