實例/語義分割 – NVIDIA 技術博客
http://www.open-lab.net/zh-cn/blog
閱讀開發者創建的最新技術信息、頭條新聞 和內容。Wed, 06 Nov 2024 09:29:23 +0000zh-CN
hourly
1 196178272基于 NVIDIA NIM 的多模態視覺 AI 智能體構建解決方案
http://www.open-lab.net/zh-cn/blog/build-multimodal-visual-ai-agents-powered-by-nvidia-nim/
Thu, 31 Oct 2024 09:20:00 +0000http://www.open-lab.net/zh-cn/blog/?p=11846Continued]]>視覺數據(從圖像到 PDF 再到流式視頻)呈指數級增長,這使得人工審查和分析幾乎不可能實現。組織正在努力將這些數據大規模轉換為切實可行的見解,從而導致錯失機會并增加風險。 為了應對這一挑戰,視覺語言模型(VLMs)正在成為強大的工具,將圖像和視頻的視覺感知與基于文本的推理相結合。與僅處理文本的 傳統大語言模型 (LLMs)不同,VLMs 使您能夠構建 視覺 AI 智能體 ,以便理解和處理復雜的多模態數據,并對其采取行動,從而實現實時決策和自動化。 想象一下,擁有一個智能 AI 智能體,它可以分析遠程攝像頭鏡頭以檢測野火的早期跡象,或者掃描業務文檔以提取隱藏在圖表、表格和圖像中的關鍵信息——這一切都可以自動完成。 借助 NVIDIA NIM 微服務 ,構建這些先進的視覺 AI 智能體比以往更容易、更高效。NIM 微服務提供靈活的自定義、簡化的 API 集成和流暢的部署,
]]>11846NVIDIA TAO 5.5 帶來新基礎模型和增強訓練功能
http://www.open-lab.net/zh-cn/blog/new-foundational-models-and-training-capabilities-with-nvidia-tao-5-5/
Wed, 28 Aug 2024 06:23:45 +0000http://www.open-lab.net/zh-cn/blog/?p=11078Continued]]>NVIDIA TAO 是一個旨在簡化和加速 AI 模型開發和部署的框架。它使您能夠使用預訓練模型,使用自己的數據微調模型,并針對特定用例優化模型,而無需深入的 AI 專業知識。 TAO 與 NVIDIA 硬件和軟件生態系統無縫集成,提供用于高效 AI 模型訓練、部署和推理的工具,并加速 AI 驅動應用程序的上市時間。 圖 1 顯示 TAO 支持 PyTorch、TensorFlow 和 ONNX 等框架。訓練可以在多個平臺上完成,而生成的模型可以部署在 GPU、CPU、MCU 和 DLA 等各種推理平臺上。 NVIDIA 剛剛發布了 TAO 5.5,引入了先進的基礎模型和突破性功能,可增強任何 AI 模型開發。新的功能包括以下內容: 在本文中,我們將更詳細地討論 TAO 5.5 的新功能。 NVIDIA TAO 集成了開源、基礎和專有模型,