Rich Harang – NVIDIA 技術博客
http://www.open-lab.net/zh-cn/blog
閱讀開發者創建的最新技術信息、頭條新聞 和內容。Tue, 17 Jun 2025 09:15:30 +0000zh-CN
hourly
1 196178272使用 NVIDIA NIM 安全部署 AI 模型
http://www.open-lab.net/zh-cn/blog/securely-deploy-ai-models-with-nvidia-nim/
Wed, 11 Jun 2025 09:12:36 +0000http://www.open-lab.net/zh-cn/blog/?p=14306Continued]]>想象一下,您正在領導大型企業的安全工作,并且您的團隊渴望將 AI 用于越來越多的項目。不過,這是一個問題。與任何項目一樣,您必須平衡創新的前景和回報與合規性、風險管理和安全態勢要求等嚴峻現實。 安全領導者在評估 AI 模型 (例如為代理式 AI 或檢索增強生成 (RAG) 提供支持的 AI 模型) 時面臨著一個關鍵挑戰:如何在提供這些前沿創新的同時保持對其基礎設施和數據的完全控制。 這正是 NVIDIA NIM 微服務和 NVIDIA AI Enterprise 的用武之地。借助隨 NVIDIA AI Enterprise 許可證提供的 NIM 微服務,企業能夠根據自己的條件部署生成式 AI,同時保持對開源模型的安全性、信任和控制。NVIDIA AI Enterprise 提供了一種選擇:您可以在本地、私有云甚至空氣間隙環境中安全地運行 AI 工作負載。
]]>13039定義 LLM 紅色團隊
http://www.open-lab.net/zh-cn/blog/defining-llm-red-teaming/
Tue, 25 Feb 2025 07:04:29 +0000http://www.open-lab.net/zh-cn/blog/?p=13036Continued]]>在一項活動中,人們為生成式 AI 技術 (例如大語言模型 (LLMs)) 提供輸入,以確定輸出是否會偏離可接受的標準。LLMs 的這種使用始于 2023 年,并已迅速發展成為一種常見的行業實踐,也是值得信賴的 AI 的基石。如何標準化和定義 LLM 紅色團隊? NVIDIA、華盛頓大學、Center for Human-Compatible AI 和哥本哈根 IT 大學的研究人員對紅色團隊的實際應用“ Summon a demon and bind it: A grounded theory of LLM red teaming ”(在 PLOS One 中發布) 進行了一項研究。 由于目標是定義和理解相對較新的活動,因此該研究采用了有根據的理論方法,在數千分鐘的視頻錄制中,以數十位從業者的訪談作為證據。我們與安全專業人員、政策研究人員和科學家,
]]>13036NVIDIA 在領先的網絡安全會議上展示 AI 安全專業知識
http://www.open-lab.net/zh-cn/blog/nvidia-presents-ai-security-expertise-at-leading-cybersecurity-conferences/
Wed, 18 Sep 2024 07:46:54 +0000http://www.open-lab.net/zh-cn/blog/?p=11377Continued]]>每年 8 月,成千上萬的安全專業人員都會參加最前沿的安全會議 Black Hat USA 和 DEF CON。這一年,NVIDIA AI 安全專家參加了這些活動,分享我們的工作,并向社區其他成員學習。 本文概述了這些貢獻,包括關于快速發展的 AI 環境的主題演講、對抗性機器學習訓練、關于大型語言模型(LLM)安全性的演講等。這項工作有助于為安全社區提供必要的知識,以便他們以安全為理念有效部署 AI 系統。 Black Hat 是一項國際公認的網絡安全活動,提供相關的技術和信息安全研究。本年,圍繞生成式 AI 工具在安全生態系統中的應用可能性以及 AI 部署本身的安全性,討論聲不斷增長。 在 AI 峰會主題演講中,NVIDIA 網絡安全 AI 總監 Bartley Richardson 與 WWT 首席執行官 Jim Kavanaugh 共同分享了對迅速發展的 AI…
]]>8246AI 紅隊:機器學習安全培訓
http://www.open-lab.net/zh-cn/blog/ai-red-team-machine-learning-security-training/
Thu, 19 Oct 2023 06:51:38 +0000http://www.open-lab.net/zh-cn/blog/?p=8068Continued]]>在 Black Hat USA 2023 上, NVIDIA 舉辦了為期兩天的培訓課程,為安全專業人員提供了一個現實的環境和方法,以探索機器學習(ML)在當今環境中帶來的獨特風險。 在這篇文章中, NVIDIA AI 紅隊分享了培訓期間的內容,以及繼續學習 ML 安全的其他機會。 今年是人工智能的輝煌一年。許多安全團隊被要求評估和保護人工智能產品,而沒有適當評估其潛在漏洞的技能和知識。 通過在世界領先的安全會議之一上提供此培訓,我們能夠在許多不同的垂直行業分享 NVIDIA AI 紅隊的經驗和知識。我們幫助確保這些組織能夠開始安全地使用和開發人工智能解決方案。我們也來自那個社區,所以這是一個舒適的教學空間。 為期兩天的培訓包括 20 多本 Jupyter 筆記本和 200 張幻燈片,分為以下模塊: 太多了。與會者帶著幻燈片和筆記本回家,
]]>7555在 DEF CON 競賽中提高機器學習安全技能
http://www.open-lab.net/zh-cn/blog/improving-machine-learning-security-skills-at-a-def-con-competition/
Wed, 30 Nov 2022 10:26:00 +0000http://www.open-lab.net/zh-cn/blog/?p=5785Continued]]>機器學習( ML )安全是一門新的學科,關注機器學習系統及其所建立的數據的安全。它存在于信息安全和數據科學領域的交叉點。 盡管最先進的技術在進步,但對于保護和測試機器學習系統,還沒有明確的入門和學習路徑。那么,感興趣的從業者應該如何開始開發機器學習安全技能?您可以閱讀 arXiv 上的相關文章,但實際步驟如何? 競爭提供了一個充滿希望的機會。 NVIDIA 最近在 DEF CON 30 黑客和安全會議上幫助舉辦了一場創新的 ML 安全競賽。比賽由 AI Village 主辦,吸引了 3000 多名參賽者。它旨在向與會者介紹彼此以及 ML 安全領域。比賽證明是參與者發展和提高機器學習安全技能的寶貴機會。 為了主動測試和評估 NVIDIA 機器學習產品的安全性, NVIDIA AI 紅色團隊一直在擴大。雖然該團隊由經驗豐富的安全和數據專業人員組成,