• <xmp id="om0om">
  • <table id="om0om"><noscript id="om0om"></noscript></table>
  • After clicking “Watch Now” you will be prompted to login or join.


    WATCH NOW



     
    Click “Watch Now” to login or join the NVIDIA Developer Program.

    WATCH NOW

    Improving CNN Performance with Spatial Context

    Daniel Russakoff, Voxeleron

    GTC 2020

    Deep learning with convolutional neural networks (CNN) is a powerful technique with wide-ranging applications. It has largely replaced traditional computer vision as the go-to method for solving image-analysis and classification problems. At its essence, however, training a CNN is an enormous global optimization problem which, like all optimizations, can fall victim to local extrema. We'll discuss ways of mitigating this issue using computer vision to add spatial context information to restrict the domain of optimization. These techniques not only speed up the training, but also improve the overall performance of the networks. We'll demonstrate results on real-world classification and segmentation problems.




    View More GTC 2020 Content

    人人超碰97caoporen国产