• <xmp id="om0om">
  • <table id="om0om"><noscript id="om0om"></noscript></table>
  • Note: This video may require joining the NVIDIA Developer Program or login

    GTC Silicon Valley-2019 ID:S9950:Using GPUs to Generate Reproducible Workflows to Accelerate Drug Discovery

    Amanda Minnich(Lawrence Livermore National Laboratory)
    The existing drug discovery process is costly, slow, and in need of innovation. At ATOM, a public-private consortium consisting of LLNL, GSK, UCSF, and FNL, we built an HPC-driven drug discovery pipeline that is supported by GPU-enabled supercomputers and containerized infrastructure. We'll describe the pipeline's infrastructure, including our data lake and model zoo, and share lessons learned along the way. We'll discuss the data-driven modeling pipeline we're using to create thousands of optimized models and the critical role of GPUs in this work. We'll also share model performance results and touch on how these models are integral to ATOM's new drug discovery paradigm. By building GPU-Accelerated tools, we aim to transform drug discovery from a time-consuming and sequential process to a highly parallelized and integrated approach.

    View the slides (pdf)

    人人超碰97caoporen国产