As large language models (LLMs) are becoming even bigger, it is increasingly important to provide easy-to-use and efficient deployment paths because the cost of serving such LLMs is becoming higher. One way to reduce this cost is to apply post-training quantization (PTQ), which consists of techniques to reduce computational and memory requirements for serving trained models. In this post…
]]>In the fast-evolving landscape of generative AI, the demand for accelerated inference speed remains a pressing concern. With the exponential growth in model size and complexity, the need to swiftly produce results to serve numerous users simultaneously continues to grow. The NVIDIA platform stands at the forefront of this endeavor, delivering perpetual performance leaps through innovations across…
]]>